// Copyright (C) 2007 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#include "dlib/graph_utils.h"
#include "dlib/graph.h"
#include "dlib/directed_graph.h"
#include "dlib/bayes_utils.h"
#include "dlib/set.h"
#include <sstream>
#include <string>
#include <cstdlib>
#include <ctime>
#include "tester.h"
namespace
{
using namespace test;
using namespace dlib;
using namespace std;
logger dlog("test.bayes_nets");
enum nodes
{
A, T, S, L, O, B, D, X
};
template <typename gtype>
void setup_simple_network (
gtype& bn
)
{
/*
A
/ \
T S
*/
using namespace bayes_node_utils;
bn.set_number_of_nodes(3);
bn.add_edge(A, T);
bn.add_edge(A, S);
set_node_num_values(bn, A, 2);
set_node_num_values(bn, T, 2);
set_node_num_values(bn, S, 2);
assignment parents;
// set probabilities for node A
set_node_probability(bn, A, 1, parents, 0.1);
set_node_probability(bn, A, 0, parents, 1-0.1);
// set probabilities for node T
parents.add(A, 1);
set_node_probability(bn, T, 1, parents, 0.5);
set_node_probability(bn, T, 0, parents, 1-0.5);
parents[A] = 0;
set_node_probability(bn, T, 1, parents, 0.5);
set_node_probability(bn, T, 0, parents, 1-0.5);
// set probabilities for node S
parents[A] = 1;
set_node_probability(bn, S, 1, parents, 0.5);
set_node_probability(bn, S, 0, parents, 1-0.5);
parents[A] = 0;
set_node_probability(bn, S, 1, parents, 0.5);
set_node_probability(bn, S, 0, parents, 1-0.5);
// test the serialization code here by pushing this network though it
ostringstream sout;
serialize(bn, sout);
bn.clear();
DLIB_TEST(bn.number_of_nodes() == 0);
istringstream sin(sout.str());
deserialize(bn, sin);
DLIB_TEST(bn.number_of_nodes() == 3);
}
template <typename gtype>
void setup_dyspnea_network (
gtype& bn,
bool deterministic_o_node = true
)
{
/*
This is the example network used by David Zaret in his
reasoning under uncertainty class at Johns Hopkins
*/
using namespace bayes_node_utils;
bn.set_number_of_nodes(8);
bn.add_edge(A, T);
bn.add_edge(T, O);
bn.add_edge(O, D);
bn.add_edge(O, X);
bn.add_edge(S, B);
bn.add_edge(S, L);
bn.add_edge(L, O);
bn.add_edge(B, D);
set_node_num_values(bn, A, 2);
set_node_num_values(bn, T, 2);
set_node_num_values(bn, O, 2);
set_node_num_values(bn, X, 2);
set_node_num_values(bn, L, 2);
set_node_num_values(bn, S, 2);
set_node_num_values(bn, B, 2);
set_node_num_values(bn, D, 2);
assignment parents;
// set probabilities for node A
set_node_probability(bn, A, 1, parents, 0.01);
set_node_probability(bn, A, 0, parents, 1-0.01);
// set probabilities for node S
set_node_probability(bn, S, 1, parents, 0.5);
set_node_probability(bn, S, 0, parents, 1-0.5);
// set probabilities for node T
parents.add(A, 1);
set_node_probability(bn, T, 1, parents, 0.05);
set_node_probability(bn, T, 0, parents, 1-0.05);
parents[A] = 0;
set_node_probability(bn, T, 1, parents, 0.01);
set_node_probability(bn, T, 0, parents, 1-0.01);
// set probabilities for node L
parents.clear();
parents.add(S,1);
set_node_probability(bn, L, 1, parents, 0.1);
set_node_probability(bn, L, 0, parents, 1-0.1);
parents[S] = 0;
set_node_probability(bn, L, 1, parents, 0.01);
set_node_probability(bn, L, 0, parents, 1-0.01);
// set probabilities for node B
parents[S] = 1;
set_node_probability(bn, B, 1, parents, 0.6);
set_node_probability(bn, B, 0, parents, 1-0.6);
parents[S] = 0;
set_node_probability(bn, B, 1, parents, 0.3);
set_node_probability(bn, B, 0, parents, 1-0.3);
// set probabilities for node O
double v;
if (deterministic_o_node)
v = 1;
else
v = 0.99;
parents.clear();
parents.add(T,1);
parents.add(L,1);
set_node_probability(bn, O, 1, parents, v);
set_node_probability(bn, O, 0, parents, 1-v);
parents[T] = 0; parents[L] = 1;
set_node_probability(bn, O, 1, parents, v);
set_node_probability(bn, O, 0, parents, 1-v);
parents[T] = 1; parents[L] = 0;
set_node_probability(bn, O, 1, parents, v);
set_node_probability(bn, O, 0, parents, 1-v);
parents[T] = 0; parents[L] = 0;
set_node_probability(bn, O, 1, parents, 1-v);
set_node_probability(bn, O, 0, parents, v);
// set probabilities for node D
parents.clear();
parents.add(O,1);
parents.add(B,1);
set_node_probability(bn, D, 1, parents, 0.9);
set_node_probability(bn, D, 0, parents, 1-0.9);
parents[O] = 1; parents[B] = 0;
set_node_probability(bn, D, 1, parents, 0.7);
set_node_probability(bn, D, 0, parents, 1-0.7);
parents[O] = 0; parents[B] = 1;
set_node_probability(bn, D, 1, parents, 0.8);
set_node_probability(bn, D, 0, parents, 1-0.8);
parents[O] = 0; parents[B] = 0;
set_node_probability(bn, D, 1, parents, 0.1);
set_node_probability(bn, D, 0, parents, 1-0.1);
// set probabilities for node X
parents.clear();
parents.add(O,1);
set_node_probability(bn, X, 1, parents, 0.98);
set_node_probability(bn, X, 0, parents, 1-0.98);
parents[O] = 0;
set_node_probability(bn, X, 1, parents, 0.05);
set_node_probability(bn, X, 0, parents, 1-0.05);
// test the serialization code here by pushing this network though it
ostringstream sout;
serialize(bn, sout);
bn.clear();
DLIB_TEST(bn.number_of_nodes() == 0);
istringstream sin(sout.str());
deserialize(bn, sin);
DLIB_TEST(bn.number_of_nodes() == 8);
}
void bayes_nets_test (
)
/*!
ensures
- runs tests on the bayesian network objects and functions for compliance with the specs
!*/
{
print_spinner();
directed_graph<bayes_node>::kernel_1a_c bn;
setup_dyspnea_network(bn);
using namespace bayes_node_utils;
graph<dlib::set<unsigned long>::compare_1b_c, dlib::set<unsigned long>::compare_1b_c>::kernel_1a_c join_tree;
create_moral_graph(bn, join_tree);
create_join_tree(join_tree, join_tree);
bayesian_network_join_tree solution(bn, join_tree);
matrix<double,1,2> dist;
dist = solution.probability(A);
DLIB_TEST(abs(sum(dist) - 1.0) < 1e-5);
DLIB_TEST(abs(dist(1) - 0.01 ) < 1e-5);
dist = solution.probability(T);
DLIB_TEST(abs(sum(dist) - 1.0) < 1e-5);
DLIB_TEST(abs(dist(1) - 0.0104) < 1e-5);
dist = solution.probability(O);
DLIB_TEST(abs(sum(dist) - 1.0) < 1e-5);
DLIB_TEST(abs(dist(1) - 0.064828) < 1e-5);
dist = solution.probability(X);
DLIB_TEST(abs(sum(dist) - 1.0) < 1e-5);
DLIB_TEST(abs(dist(1) - 0.11029004) < 1e-5);
dist = solution.probability(L);
DLIB_TEST(abs(sum(dist) - 1.0) < 1e-5);
DLIB_TEST(abs(dist(1) - 0.055) < 1e-5);
dist = solution.probability(S);
DLIB_TEST(abs(sum(dist) - 1.0) < 1e-5);
DLIB_TEST(abs(dist(1) - 0.5) < 1e-5);
dist = solution.probability(B);
DLIB_TEST(abs(sum(dist) - 1.0) < 1e-5);
DLIB_TEST(abs(dist(1) - 0.4499999) < 1e-5);
dist = solution.probability(D);
DLIB_TEST(abs(sum(dist) - 1.0) < 1e-5);
DLIB_TEST(abs(dist(1) - 0.4359706 ) < 1e-5);
// now lets modify the probabilities of the bayesian network by making O
// not a deterministic node anymore but otherwise leave the network alone
setup_dyspnea_network(bn, false);
set_node_value(bn, A, 1);
set_node_value(bn, X, 1);
set_node_value(bn, S, 1);
// lets also make some of these nodes evidence nodes
set_node_as_evidence(bn, A);
set_node_as_evidence(bn, X);
set_node_as_evidence(bn, S);
// reload the solution now that we have changed the probabilities of node O
bayesian_network_join_tree(bn, join_tree).swap(solution);
DLIB_TEST(solution.number_of_nodes() == bn.number_of_nodes());
dist = solution.probability(A);
DLIB_TEST(abs(sum(dist) - 1.0) < 1e-5);
DLIB_TEST(abs(dist(1) - 1.0 ) < 1e-5);
dist = solution.probability(T);
DLIB_TEST(abs(sum(dist) - 1.0) < 1e-5);
DLIB_TEST(abs(dist(1) - 0.253508694039 ) < 1e-5);
dist = solution.probability(O);
DLIB_TEST(abs(sum(dist) - 1.0) < 1e-5);
DLIB_TEST(abs(dist(1) - 0.77856184024 ) < 1e-5);
dist = solution.probability(X);
DLIB_TEST(abs(sum(dist) - 1.0) < 1e-5);
DLIB_TEST(abs(dist(1) - 1.0 ) < 1e-5);
dist = solution.probability(L);
DLIB_TEST(abs(sum(dist) - 1.0) < 1e-5);
DLIB_TEST(abs(dist(1) - 0.5070173880 ) < 1e-5);
dist = solution.probability(S);
DLIB_TEST(abs(sum(dist) - 1.0) < 1e-5);
DLIB_TEST(abs(dist(1) - 1.0 ) < 1e-5);
dist = solution.probability(B);
DLIB_TEST(abs(sum(dist) - 1.0) < 1e-5);
DLIB_TEST(abs(dist(1) - 0.6 ) < 1e-5);
dist = solution.probability(D);
DLIB_TEST(abs(sum(dist) - 1.0) < 1e-5);
DLIB_TEST(abs(dist(1) - 0.7535685520 ) < 1e-5);
// now lets test the bayesian_network_gibbs_sampler
set_node_value(bn, A, 1);
set_node_value(bn, T, 1);
set_node_value(bn, O, 1);
set_node_value(bn, X, 1);
set_node_value(bn, S, 1);
set_node_value(bn, L, 1);
set_node_value(bn, B, 1);
set_node_value(bn, D, 1);
bayesian_network_gibbs_sampler sampler;
matrix<double,1,8> counts;
set_all_elements(counts, 0);
const unsigned long rounds = 500000;
for (unsigned long i = 0; i < rounds; ++i)
{
sampler.sample_graph(bn);
for (long c = 0; c < counts.nc(); ++c)
{
if (node_value(bn, c) == 1)
counts(c) += 1;
}
if ((i&0x3FF) == 0)
{
print_spinner();
}
}
counts /= rounds;
DLIB_TEST(abs(counts(A) - 1.0 ) < 1e-2);
DLIB_TEST(abs(counts(T) - 0.253508694039 ) < 1e-2);
DLIB_TEST_MSG(abs(counts(O) - 0.77856184024 ) < 1e-2,abs(counts(O) - 0.77856184024 ) );
DLIB_TEST(abs(counts(X) - 1.0 ) < 1e-2);
DLIB_TEST(abs(counts(L) - 0.5070173880 ) < 1e-2);
DLIB_TEST(abs(counts(S) - 1.0 ) < 1e-2);
DLIB_TEST(abs(counts(B) - 0.6 ) < 1e-2);
DLIB_TEST(abs(counts(D) - 0.7535685520 ) < 1e-2);
setup_simple_network(bn);
create_moral_graph(bn, join_tree);
create_join_tree(join_tree, join_tree);
bayesian_network_join_tree(bn, join_tree).swap(solution);
DLIB_TEST(solution.number_of_nodes() == bn.number_of_nodes());
dist = solution.probability(A);
DLIB_TEST(abs(sum(dist) - 1.0) < 1e-5);
DLIB_TEST(abs(dist(1) - 0.1 ) < 1e-5);
dist = solution.probability(T);
DLIB_TEST(abs(sum(dist) - 1.0) < 1e-5);
DLIB_TEST(abs(dist(1) - 0.5 ) < 1e-5);
dist = solution.probability(S);
DLIB_TEST(abs(sum(dist) - 1.0) < 1e-5);
DLIB_TEST(abs(dist(1) - 0.5 ) < 1e-5);
}
class bayes_nets_tester : public tester
{
public:
bayes_nets_tester (
) :
tester ("test_bayes_nets",
"Runs tests on the bayes_nets objects and functions.")
{}
void perform_test (
)
{
bayes_nets_test();
}
} a;
}